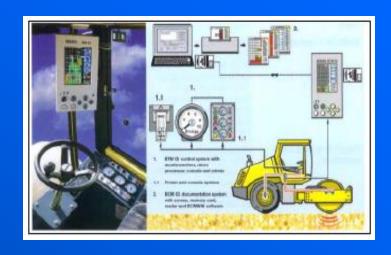
Update FHWA Asphalt Program

John Bukowski
Asphalt Team Leader
Office of Pavement Technology

Program Focus Areas

- Pavement Design and Analysis
- Materials and Construction Technology
- Pavement Management and Preservation
- Pavement Surface Characteristics
- Construction and Materials Quality Assurance
- Environmental Stewardship

Materials and Construction Technology


- Provide Mobile Asphalt Lab
- Support National Asphalt R&D Programs
- Advance New Design Methods
 - Asphalt Mixture Performance Tester
 - Field validation & mix quality verification
 - Binder Testing Equipment
 - Effects of modified binders on mix
 - Aggregate Imaging System
 - Testing program & implementation

Materials and Construction Technology

Example Asphalt Initiatives:

- Automated Plant Controls
- Intelligent Compaction
- Warm Mix Asphalt

R&D Accelerated Load Facility

- Specialized research
- Performance prediction

Construction & Materials Quality Assurance

Initiatives:

- Guidance on 23 CFR 637
- Use of Contractor Test Results & Sampling Plans
- State Process Reviews (to date in 28 States)
- Develop Training Materials & Sponsor Workshops
- Develop Analysis Tools
- Promote Advanced Quality Systems
 - Quality Assurance Specs
 - Performance Based Specs
 - Warranty Specs

Testing Assistance

- Mobile Laboratories
 - On site field testing
 - 4-6 States/year
 - Hands on training
 - Showcase equipment
 - Superpave, AAPT, MSCR, etc.
 - Support research with field data
 - Provide data to efforts within FHWA and also to NCHRP projects

Environmental Stewardship

Improve sustainability of pavement materials

Initiatives:

- Participate on RAP and WMA Expert Task Groups
- Support AASHTO Recycling Initiatives
- Development of Applications to Reuse Materials
- Develop Publications and Workshops
- Develop Tools (Recycling Took Kit)
- Support Development of Specs
- Support Green Highways Programs

Use of Recycled Materials

Increased RAP Usage
 www.moreRAP.us

Effective Utilization of RAS

http://shinglerecycling.org/images/stories/shingle_PDF/ShingleBPG% 2010-07.pdf

http://store.hotmix.org/index.php?productID=624

- Recycled Materials Resource Center http://www.rmrc.unh.edu/
- FHWA Policy on use of Recycled Materials

Technology Partnerships

- Expert Task Groups
 - Asphalt Mixture & Asphalt Binder
 - Asphalt Modeling
 - Warm Mix Asphalt
 - RAP
- Cooperative Agreements
 - National Center for Asphalt Technology
 - Asphalt Institute
 - National Asphalt Pavement Association

Asphalt Mix ETG – Key Activities

- AASHTO SOM Input (Harvey)
- SGC Operational Issues (Dukatz/D'Angelo)
- AMPT Flow Number, NCHRP 9-29 (Bonaquist)
- Specific Gravity Task Force (West)
- Mix Design Manual, NCHRP 9-33 (Christensen)
- IDT E* Ruggedness (Kim)
- Longitudinal Joint Construction (LaFleur)
 National Survey Results (Harman)

Subcommittee on Materials Standards Update – ETG Input

- T 312 08 Preparing and Determining the Density of HMA Specimens by SGC
 - Internal Angle Only (1.16 ± 0.02°)
 - Only TP 71 Simulated Loading
 - Precision and Bias Based on External Angle
- Asphalt Mixture Performance Tester Asphalt
 - End Note Reference to NCHRP 9-29 and the Simple Performance Tester
 - Published as TP 79, PP 60, PP 61, and PP 62

Superpave Gyratory Compactor Operational Issues

- Guidance document, publication as a TRB
 Circular through subcommittee AFK50 provide
 background information on the development
 of internal angle measurements.
- T312 Proposed Annex for Evaluating Molds

Superpave Gyratory Compactor Operational Issues

- Ndesign adjustments
- Latest study 9-9(1) recommendations
- 9-33 maintain existing Ndesign criteria
- Performance Testing Evaluation

Asphalt Mix Performance Tester

- NCHRP 9-29
- Evaluate mixture rutting (Fn) and fatigue response (E*)
- Relatively inexpensive and easy to use
- Provides MEPDG input

Asphalt Mix Performance Tester (2009/2010)

- Develop pooled fund for training and equipment purchase of the equipment
- Technician training for operation of the equipment (AAT contractor/NCAT Lab)
- Remaining issue with determination
 Flow Number

Asphalt Mix Performance Tester Flow Number (Fn)

- Developed as indicator of rutting potential
- 9-33 relationship flow number/maximum traffic with lab mixes (field mix issue-age)
- Issues
 - High temperature 50% reliability PG LTPPBind 3.1
 - Confined/unconfined
 - Load various levels have been used

Flow Number -- What's Next

- Too early to prepare standard criteria
- Continue to monitor work in progress
- Encourage investigation of
 - Relationship to rutting performance
 - Sensitivity to mix design factors
 - Use of both confined and unconfined tests on the same materials

Specific Gravity Task Group

Task Group Objectives:

- Identify issues with current AASHTO standards - Recommendations regarding changes and/or new methods
- Evaluate alternate methods
- Guidance document, publication as a TRB Circular

Specific Gravity Task Group SOM Recommendations.....

- T166 (Bulk Specific Gravity)
 - Changes sent to replace reference to paraffin method with vacuum sealing method
 - Change water absorption limit to 1.0%
 - Precision estimates from NCHRP 9-26
- Effects on Volumetrics possible:
 - Design VMA measurement increases by 0.5%
 - In-place density measurement (%Gmm) increases by 1.0% for mixes

9-33: Mix Design Manual for HMA

Final report January 2010 (AAT)

- Test procedures for dense, gap and open graded mixes
- HMA performance tests
- Criteria developed with M-E Design Guide
- Final critical issues being evaluated:
 - FAA values and CAA values
 - Flat & elongated requirements
 - Performance Tests
 - Design VMA values
 - Design gyration levels
 - RAP

IDT Testing for E*

- Current E* test protocol not adequate for testing field cores for forensic studies and rehabilitation design
- Need for E* test protocol using IDT
- NC State developed IDT testing mode
- Draft specifications developed
 - Specimen fabrication
 - Master curve generation
 - IDT E* testing/procedural ruggedness

Binder ETG - Key Activities

- Low Temperature Task Group
 - ABCD Low Temperature (Sang Soo Kim)
- Fatigue Task Group
 - Response of PMA (Bahia)
- High Temperature Task Group
 - MSCR Test Method(D'Angelo/Anderson)
- Polyphosphoric Acid (D'Angelo)
- Other Topics
 - Recovered Motor Oil (Youtcheff)
 - DSR Sample Preparation (VanFrank)
 - Temperature Equilibrium (Anderson)

Advances in Binder Tests

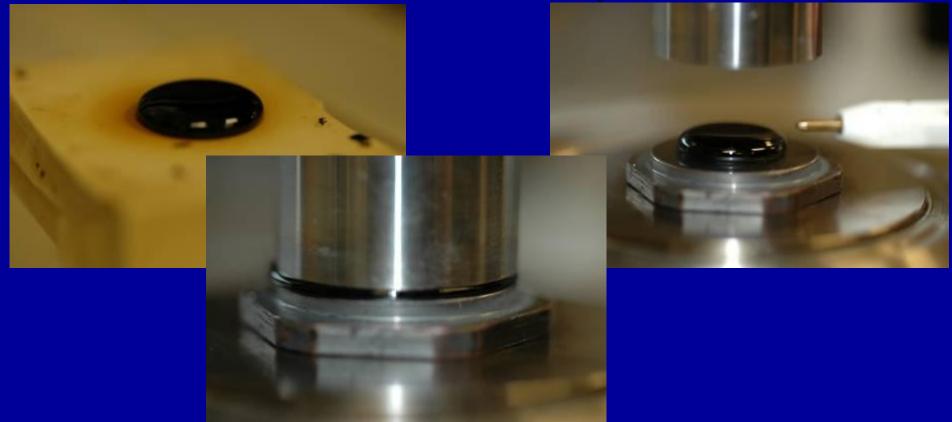
- Low Temperature Cracking
 - ABCD Device
 - Sang Soo Kim (Ohio University)
 - Status: Initial Shakedown and Round Robin Underway

Binder Fatigue Testing

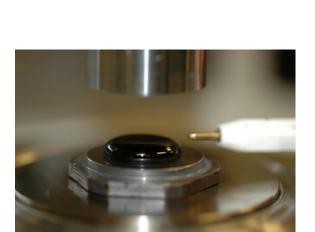
- Binder Yield Energy Test (BYET)
- Draft of an AASHTO Procedure
- Multiple labs to test for validation
- Modeling challenges remain
- ETG review by Fatigue Task Group

Fatigue Testing – another approach

- Fatigue testing on HMA samples in the DSR
- How does polymer modification effect fatigue properties of binders.
- Does the percentage of PM significantly change the fatigue response of binders.


Multi-Stress Creep and Recovery Test Method

- Inadequacy of Superpave high temp G*/sinδ to predict modifier behavior
- Testing is done at actual pavement temperatures
- New MSCR High Temperature Spec (M320 Table 3) correlates to rutting for both neat and polymer modified binders
- Various implementation efforts and specification refinement



Multi Stress Creep and Recovery

 Sample prep is exactly the same as the existing rolling thin film oven test and dynamic shear rheometer (RTFOT DSR).

•Standard Test Procedure developed for AASHTO TP70-08

Standard Method of Test for

Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)

AASHTO Designation: TP 70-08

American Association of State Highway and Transportation Officials 444 North Capitol Street N.W., Suite 249 Washington, D.C. 20001

•Developed as Table 3 for ASSHTO M 320-09

Original					
DSR G*/sinδ Min 1.0	64				
RTFOT					
64 Standard MSCR3.2 <4.0		64			
64 Heavy MSCR 3.2<2.0	[(MSCR3.2 - MSCR 0.1)/ MSCR 0.1] < .75	64			
64 Very heavy MSCR3.2 <1.0		64			
PAV					
S grade DSR G*sinō Max 5000	28	25	22	19	16
H & V grade DSR G*sinō Max 6000	28	25	22	19	16

Standard Specification for

Performance-Graded Asphalt Binder

_

AASHTO Designation: M 320-09

American Association of State Highway and Transportation Officials 444 North Capitol Street N.W., Suite 249 Washington, D.C. 20001

Status

- Currently Table 3, SOM balloting as stand alone
- Regional workshops Asphalt Institute and FHWA
- Asphalt Institute and FHWA efforts on testing Precision and Bias
- Developing user literature
- User Producer Groups "round robin" repeatability testing
- Provide users with alternatives to the empirical Superpave Plus tests

Technology Partnerships

- Current Pooled Funds
 - AMPT Procurement/Training (TPF5-178)
 - RAS Performance Information (TPF5-213)
 - Intelligent Compaction Equipment Loan/ Demo (TPF5-128)
 - 2009 NCAT Test Track (TPF5-508)
 - RMRC (TPF5-199)

Technology Partnerships

- Some Specification Recommendations
 - T 312 Preparing and Determining the Density of HMA Specimens by SGC
 - TP 62 Determining Dynamic Modulus of HMA
 - TP 79 Determining the Dynamic Modulus and Flow Number for HMA Using the AMPT
 - PP 60 Preparation of Cylindrical Performance Test Specimens Using the SGC
 - PP 61 Developing Dynamic Modulus Master Curves for HMA Using the AMPT
 - PP 62 Developing Dynamic Modulus Master Curves for HMA Using TP62 Procedure
 - T166 (Bulk Specific Gravity) and T 331 (Corelok)
 - M320 PG Asphalt Binder

Thank You!

http://www.fhwa.dot.gov/pavement

Download ETG Presentations at:

ftp://fhwaftp.fhwa.dot.gov

User ID: hiptguest

Password: hiptguest